Ambrosia Symbiosis > Lab Protocols
  • Back to Ambrosia Symbiosis Main
  • Lab
  • Create Protocol
  • Edit Protocols
Home» Articles posted by adamblack

Articles posted by adamblack

Sequencing

Posted on April 10, 2013 by adamblack in General Molecular Work

Currently, GENEWIZ offers the best rate for sequencing 48 or fewer reactions with clean up. If you are submitting 48 or less, please follow the GENEWIZ protocol below, using 8 strip cap tubes. If you have greater than 48 samples, please submit using a prepaid plate through Eurofins, following the Eurofins protocol below.

You may prefer to use one company over the other for a multitude of reasons. For submitting larger numbers of samples to GENEWIZ, the protocol is roughly the same, but you use semi skirted plates and strip caps. For submitting fewer samples to Eurofins, we have barcodes (used for loose 1.5mL vials, which they use for orders of less than 24 samples)and packaging material available. Please follow the guidelines for sample submission on the Eurofins Genomics website.

GENEWIZ

In general, we will be using the “Custom” option for GENEWIZ. This entails sending 10uL of diluted un-purified PCR product per sample, with 5uL of 5uM primer per sample. For most cases, we will opt to have clean up performed at the facility.

Primers: Send 5uL of 5uM primer per sample to be sequenced. To make a solution of 5uM in 5uL, mix 2.5uL of your 10x primer stock with 2.5uL PCR water. Multiply these values by your number of samples + 2 and send in one Eppendorf tube per primer. Label with the primer name and concentration (5uM).

Template: Send in 10uL of your un-purified PCR product per well. This can be diluted with water, 0.5uL PCR product mixed with 0.5uL water tends to work well for most. If your band is strong and you know your concentration is high, you can increase the dilution to conserve PCR product. If it is weak or you know the concentration is low, you can send in less dilute product.

Submitting samples:

1) Create or log in to your GENEWIZ account. If this is your first time creating it, use 11575668 as the PI/Institution ID. Contact Zach with your account email to be added to the Lab Group to share payment info and sequence results.

2) Create a sequencing order from your account page. Choose the options for “Same Day” and “Upload Excel Form.” Choose and download the “Custom Form.”

3) Fill out and upload the Excel form by typing in your sample names, primer names, and Primer Concentrations. Select your DNA Type, DNA Length, and Special Protocols from their drop down menus. You can skip DNA Concentration, GENEWIZ Primer, and Notes.

4) Select payment method. You may use your own P-card if you have one. If not, access to our Lab Group should allow you to use Zach’s.

5) Select the Newins-Ziegler Hall Mailroom as your sample pickup location.

6) Submit your request, here you can print off the form you will include with your samples. This will also give you vial labels if you are sending in samples in strip tubes, label these values on the sides. Plates do not need labels as the excel file assigns well positions. Use 8 strip domed caps to seal vials and plates. You can wrap in parafilm for extra security.

7) Place samples in ziploc sample bag with primers and the provided order form. Drop off your sample in the GENEWIZ box in the NZH mail room before 4pm on the day of submission for pickup. If you cannot make it by this time, send an email to DN****@ge*****.com on the day you drop it off to notify them so it will be picked up.

Pricing: For custom orders the cost is $4 per sample. Clean up is an additional $1. You can perform clean up yourself, however this saves us little money given the cost of ExoSAP.

Running Gels

Posted on April 10, 2013 by adamblack in General Molecular Work

Electrophoresis Gel Procedure

Materials:
TAE buffer (In transparent plastic bottle)
Erlenmeyer flask with cap (glass petri dish)
Weigh paper
PCR Grade Agarose (1% agarose in buffer)
Electrophoresis machine
2 gel combs

Procedure:
• Weigh 0.7 grams of agarose using the blue plastic spoon in the agarose jar, and put this in the flask.
• Measure 70 mL of TAE buffer and pour into the flask
• Heat the flask with cap in the microwave at 2 minutes until you hear a tinkling sound – at this point take it out and swirl. Use the green PPE glove.
• Repeat microwaving in increments until you hear the tinkling sounds. Keep repeating until the agarose is completely dissolved (it will not look like there are clear granules in the liquid).
• Let the flask cool after microwaving (you may run water over the flask to cool it faster). It should cool to about 50 degrees C before you pour it. The flask shouldn’t be painful to the touch.
• Ensure that the gel casting tray is clean and dry. It may be cleaned with DI water if dirty. Never use bleach to clean the acrylic.
• Ensure that the gel container is oriented so that the current will run from black to red.
• Check that the gel container is level using the rounded level.
• Ensure that the gel casting tray is oriented so that the seals are against the walls of the gel container.
• Pour the gel from the flask into the casting tray. Use a pipette tip to remove any bubbles.
• Include 2 gel combs in the notches in the tray. Note: the combs have different volume sizes and amount of wells on each side, so be sure to pick the well volume and number of wells you want.
• The gel takes 1.5 to 2 hours to fully solidify. It can be checked intermittently during this time, and will turn opaque when solid and dry.
• Turn the gel casting tray so that the well contents will flow from black to red. If oriented from red to black, the bands will just fall off of the gel into the buffer. Pour buffer so that it is touching the electrodes.
• Once buffer is covering everything, the combs may be taken out. Be careful not to rip the gel. Pull the combs directly upwards.

Filling Wells

Materials:
SYBR green (In freezer)
Loading dye
Ladder 100 BP (fridge)
Approximately 6 inches of parafilm
10 uL pipette and tips

Procedure:
• Beforehand, mix 300 uL SYBR green with 600 uL loading dye and keep in freezer.
• Centrifuge the PCR products and then put in a frozen rack. Centrifuge SYBR green mixture and put in the larger frozen rack wrapped in aluminum foil. It is light sensitive.
• Add SYBR green mixture in dots on the parafilm, with 2 uL of the mixture per dot. You will need the amount of dots for your number of samples plus 1 for the ladder. (8 dots for 5 beetles, a negative and positive control, and the ladder).
• Add 6-8 uL of ladder in the first dot only, and pull the liquid up and down in the pipette tip to mix. Note: if electrophoresing two rows of wells, it can be helpful to put a ladder in the first well of the second row as well as the first.
• Add 6 uL of each PCR product in each of the other dots and mix up and down in the pipette tip (It is important at this point to make sure you know what order your samples are in).
• Set the pipette to 9.5 uL and pull the first dot up with the pipette. Be careful not to introduce air bubbles. Add the liquid to the first well as vertically as possible, and being careful not to touch the gel. Don’t press the pipette button down the second half of the way so that air bubbles are not introduced. It is better to leave a very small amount of PCR product in the tip than to introduce bubbles.
• Repeat this with each of the dots into each of the wells.
• Slide the lid onto the gel container.
• Plug the red cord into the red outlet, and the black cord into the black outlet on the machine.
• Turn the machine on, and put on 100 volts for 45 minutes.
• Take a photo of the gel within 10 minutes after it finishes.

Gel Photos Procedure:
• Take the gel casting tray out of the gel container and place it into the tray of the Enduro machine. Make sure everything on the machine is closed, because it emits UV light to take the photo.
• Open the Enduro GDS software on the computer, and click capture image, then click illuminate. This should make the gel with bands visible. You can adjust the illumination to make the bands more visible. Once done adjusting, you can take a photo.
• Take the gel casting tray out of the machine, making sure the UV is off first.
• Gel can be thrown away, and the gel casting tray can be cleaned with DI water. Wipe the Enduro tray with DI water as well.

Preparing Gel

For the small tray, you need 60mL of 1% gel (0.6g of agarose to 60 ml of TAE buffer). Boil over in microwave (about 2 mins). Cool down under cold water, pour into the rig with combs, wait for about 15 min.

For the medium tray, you need 160mL of 1% gel (1.6g of agarose to 160mL of TAE buffer). Boil over in microwave (about 2 mins). Cool down under cold water, pour into the rig with gel combs, wait for about 15 min.

Preparing SYBR Green

For loading directly to the wells in the gel with your sample

From www.lonza.com: SYBR® Green I Stain can be added directly to the loading buffer at a final concentration of 1:1000. First prepare a 1:100 dilution of SYBR® Green I Stain in high-quality anhydrous DMSO. The 1:100 dilution can be stored in the freezer and reused. Add 1 μl of this dilution to 9 μl-10 μl of your sample before loading.

SYBR Green & Dye mastermix

For one sample, combine 0.5uL of 100x SYBR (labeled 1:100X) and 1uL of 6X Loading Dye. Mix that with 5uL of PCR product. Or, more typically, make and store a mastermix:

For mastermix, combine 300uL of 100x SYBR and 600uL of Dye.

Loading the Gel

Prepare ~1.5uL droplets of SYBR & Dye mastermix on parafilm, there are aliquots of this mix prepared by the lab manager in the shared reagent box in the door of the small freezer. Add 5uL of PCR product, mix by sucking up & down with the pipette. Load into slot on gel.

For GreenTaq PCR product (product is green): add 5uL of sample to respective droplets of only SYBR Green, mix by sucking up&down with the pipette. No other loading dye needed.

Run on about 110 Volts for 45 minutes for running about halfway down the gel. Lower time for a shorter distance. If there is not enough liquid in the gel tray, add TAE buffer, just enough to cover the gel.

A cheap and possibly mutagenic alternative to SYBR Green is 1:1000X Ethidium Bromide added directly to the agarose after cooling. WEAR GLOVES!
Load DNA ladder in the last well.

3D Printed gel combs

We have designs for 3D printed gel combs compatible with our gel trays. These combs are designed to match our multichannel pipettes and rest either on top of, or in the slots of, the gel trays. The designs have three pieces: (1) the comb itself, slotted to fit into one of the holder types and with single and dual lane options; (2) an on top of tray holder which allows you to place the comb at any distance down the tray, and (3) an in line holder which allows you to use the standard distance slots in the tray. Links to the 3D printable files can be found below. You may print these through the UF libraries for a low cost as student, faculty, or staff.

PLEASE DO NOT EDIT THESE DESIGNS. To prepare one for printing, simply select the piece you would like to print, choose “Export,” and export just that piece as an .stl file. This can then be uploaded to the printing lab. Do not try to download all three pieces as one file, each file must be a single connected piece. You can submit multiple files at once to have them printed at the same time.

Medium gel design

Primers

Posted on April 10, 2013 by adamblack in General Molecular Work

Diluting primers

Reconstituting lyophilized primers to create 100X stock:
Resuspend to 100 uM/L concentration: for 28.5 nM of lyophilized primer, add 285 ul water (10 times more, in uL).

Dilute to make working solution :
To 10uL of the working stock above, add 90 uL of water, to make 10 uM/L (or 10 pM/ul) solution.

Working concentration: Use 1uL of the working solution above in 25uL reaction (10/25=0.4pM per rxn).

 

Primers we use

gene primer code seq
16S 1492R GGTTACCTTGTTACGACTT
16S 27F 5′-AGAGTTTGATCCTGGCTCAG
16S bact rev 338R 5′-TGCTGCCTCCCGTAGGAGT Amann et al. 1995. Microbiol. Rev. 59, 143–169.
16S bact+archaea for 515F 5′-GTGCCAGCMGCCGCGGTAA Bergmann et al 2011 (Fierer lab)
16S bact+archaea rev 806R 5-GGACTACVSGGGTATCTAAT Bergmann et al 2011 (Fierer lab)
cellobiohydrolase fungCBH1f
cellobiohydrolase fungCBH1r
efTu 52F Ludwig et al
ITS (end of SSU) ITS1 TCCGTAGGTGAACCTGCGG
ITS (in 5.8S, for) ITS3 GCATCGATGAAGAACGCAGC
ITS (in 5.8S, rev) ITS2 GCTGCGTTCTTCATCGATGC
ITS (rev, start of LSU) ITS4 TCCTCCGCTTATTGATATGC
ITS fungal (like ITS1, basidio) ITS1-F CTTGGTCATTTAGAGGAAGTAA
SSU (18S) general NS1 GTAGTCATATGCTTGTCTC eukaryotes?
SSU rev NS2 GGCTGCTGGCACCAGACTTGC 550 in S. cerevisiae; eukaryotes?
SSU (18S) general NS4 CTTCCGTCAATTCCTTTAAG eukaryotes?
SSU fungal AU2 5′-TTTCGATGGTAGGATAGDGG Vandenkoornhuyse et al. 2002, Science 295:2051
SSU fungal AU4 5′-RTCTCACTAAGCCATTC Vandenkoornhuyse et al. 2002, Science 295:2051
SSU fungal JH-SSU-304 5′-CCCTATCAACTTTCGATG upstream of AU2, 2bp difference from Curculionidae, can use with NS2 for 240bp conserved product or with JH-SSU-822 for ~500bp of variable product
SSU fungal (rev) JH-SSU-822 5′-CTAGAAACCAACAAAATAG 2bp upstream of SR4, 4bp difference from Curculionidae
SSU fungal (rev) JH-SSU-1646 5′-CTAAGCCATTCAATCGGTA 6bp upstream of AU4, 2bp difference from Curculionidae
LSU (28S) LR0R 5′-ACCCGCTGAACTTAAGC identical in insect and fungi
LSU (28S) rev LR2 5′-TTTTCAAAGTTCTTTTC White et al., from yeast, 1bp difference from filamentous ascos
LSU (28S) rev LR3 5′-CCGTGTTTCAAGACGGG identical for beetles and fungi
LSU (28S) JH-LSU-91 5′-AGTAACGGCGAGTGAAG probably universal for fungi, not for insect, position 91 in S. cerevisiae 28S
LSU (28S) rev JH-LSU-377 5′-TTTTCAAAGTGCTTTTC almost identical to LR2 but with one bp more specific to filamentous ascos, position 377 in S. cerevisiae; doesn’t work very well
LSU (28S) rev JH-LSU-638 5′-GGTCCGTGTTTCAAGAC reverse complement to Vilgalis’s LR3R (which is not the same as reverse complement of LR3)
LSU (28S) rev JH-LSU-643 5′-CTCCTTGGTCCGTGTTTC tested with Raffaelea spp., inconsistent product
LSU (28S) rev JH-LSU-830 5′-GTTTCCTCTGGCTTCACCC tested with Raffaelea spp., inconsistent product

R= A G (purine) D= G A T

Buying primers

ITS1 example CType: DNA Oligos – modified & non-modified
Oligo Name: …
Synthesis Scale: 0.025 µmol
Purification: Desalt
Sequence (5′ to 3′): …
Format: Lab-ready
Number of Tubes per Oligo: 1
Concentration (µM): NA

454 primers – NO LONGER IN USE

From IDT: to get reaction-ready concentration, get 1nm in 100uL (concentration: 10)
Old FLX chemistry Fungi.

454 primer Bar Code linker template primer primer name concatenated ordered
GCCTTGCCAGCCCGCTCAG none TC AGTAACGGCGAGTGAAG JH-LSU-091-454B GCCTTGCCAGCCCGCTCAGTCAGTAACGGCGAGTGAAG 20-Aug-2011
GCCTCCCTCGCGCCATCAG AACTCGTCGATG AG CCGTGTTTCAAGACGGG LR3-454A-201 GCCTCCCTCGCGCCATCAGAACTCGTCGATGAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG AACTGTGCGTAC AG CCGTGTTTCAAGACGGG LR3-454A-202 GCCTCCCTCGCGCCATCAGAACTGTGCGTACAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG AAGAGATGTCGA AG CCGTGTTTCAAGACGGG LR3-454A-203 GCCTCCCTCGCGCCATCAGAAGAGATGTCGAAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG AAGCTGCAGTCG AG CCGTGTTTCAAGACGGG LR3-454A-204 GCCTCCCTCGCGCCATCAGAAGCTGCAGTCGAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG AATCAGTCTCGT AG CCGTGTTTCAAGACGGG LR3-454A-205 GCCTCCCTCGCGCCATCAGAATCAGTCTCGTAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG AATCGTGACTCG AG CCGTGTTTCAAGACGGG LR3-454A-206 GCCTCCCTCGCGCCATCAGAATCGTGACTCGAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACACACTATGGC AG CCGTGTTTCAAGACGGG LR3-454A-207 GCCTCCCTCGCGCCATCAGACACACTATGGCAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACACATGTCTAC AG CCGTGTTTCAAGACGGG LR3-454A-208 GCCTCCCTCGCGCCATCAGACACATGTCTACAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACACGAGCCACA AG CCGTGTTTCAAGACGGG LR3-454A-209 GCCTCCCTCGCGCCATCAGACACGAGCCACAAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACACGGTGTCTA AG CCGTGTTTCAAGACGGG LR3-454A-210 GCCTCCCTCGCGCCATCAGACACGGTGTCTAAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACACTAGATCCG AG CCGTGTTTCAAGACGGG LR3-454A-211 GCCTCCCTCGCGCCATCAGACACTAGATCCGAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACACTGTTCATG AG CCGTGTTTCAAGACGGG LR3-454A-212 GCCTCCCTCGCGCCATCAGACACTGTTCATGAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACAGACCACTCA AG CCGTGTTTCAAGACGGG LR3-454A-213 GCCTCCCTCGCGCCATCAGACAGACCACTCAAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACAGAGTCGGCT AG CCGTGTTTCAAGACGGG LR3-454A-214 GCCTCCCTCGCGCCATCAGACAGAGTCGGCTAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACAGCAGTGGTC AG CCGTGTTTCAAGACGGG LR3-454A-215 GCCTCCCTCGCGCCATCAGACAGCAGTGGTCAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACAGCTAGCTTG AG CCGTGTTTCAAGACGGG LR3-454A-216 GCCTCCCTCGCGCCATCAGACAGCTAGCTTGAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACAGTGCTTCAT AG CCGTGTTTCAAGACGGG LR3-454A-217 GCCTCCCTCGCGCCATCAGACAGTGCTTCATAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACAGTTGCGCGA AG CCGTGTTTCAAGACGGG LR3-454A-218 GCCTCCCTCGCGCCATCAGACAGTTGCGCGAAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACATCACTTAGC AG CCGTGTTTCAAGACGGG LR3-454A-219 GCCTCCCTCGCGCCATCAGACATCACTTAGCAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACATGATCGTTC AG CCGTGTTTCAAGACGGG LR3-454A-220 GCCTCCCTCGCGCCATCAGACATGATCGTTCAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACATGTCACGTG AG CCGTGTTTCAAGACGGG LR3-454A-221 GCCTCCCTCGCGCCATCAGACATGTCACGTGAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACATTCAGCGCA AG CCGTGTTTCAAGACGGG LR3-454A-222 GCCTCCCTCGCGCCATCAGACATTCAGCGCAAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACCACATACATC AG CCGTGTTTCAAGACGGG LR3-454A-223 GCCTCCCTCGCGCCATCAGACCACATACATCAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACCAGACGATGC AG CCGTGTTTCAAGACGGG LR3-454A-224 GCCTCCCTCGCGCCATCAGACCAGACGATGCAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACCAGCGACTAG AG CCGTGTTTCAAGACGGG LR3-454A-225 GCCTCCCTCGCGCCATCAGACCAGCGACTAGAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACCGCAGAGTCA AG CCGTGTTTCAAGACGGG LR3-454A-226 GCCTCCCTCGCGCCATCAGACCGCAGAGTCAAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACCTCGATCAGA AG CCGTGTTTCAAGACGGG LR3-454A-227 GCCTCCCTCGCGCCATCAGACCTCGATCAGAAGCCGTGTTTCAAGACGGG 20-Aug-2011
GCCTCCCTCGCGCCATCAG ACCTGTCTCTCT AG CCGTGTTTCAAGACGGG LR3-454A-228 GCCTCCCTCGCGCCATCAGACCTGTCTCTCTAGCCGTGTTTCAAGACGGG 20-Aug-2011

Old FLX chemistry bacteria and archaea.

454 primer Bar Code linker template primer primer name
FLA B primer: GCCTTGCCAGCCCGCTCAG none GA GTGCCAGCMGCCGCGGTAA 806R-454B-2012Feb
FLX A primer: GCCTCCCTCGCGCCATCAG various CC GGACTACVSGGGTATCTAAT 515f-454A-2012Feb-well_position

Barcodes on 515R primer ordered on Feb 06 2012 (order “515F-806R-454barcoded”). R primer mixed with each barcoded F primer.

A1 GTAGTGTCTAGC
A2 GTCGCTGTCTTC
A3 GTGAGGTCGCTA
A4 GTTGACGACAGC
A5 GTCACGACTATT
A6 GTCTGACAGTTG
A7 GTGTGCTATCAG
A8 TACAGATGGCTC
A9 TACTTACTGCAG
A10 GGATCGCAGATC
A11 GTAGACTGCGTG
A12 GTCAACGCGATG
B1 GTCTCTCTACGC
B2 GTGTCTACATTG
B3 GTATGTTGCTCA
B4 GTCTCATGTAGG
B5 GTGTACCTATCA
B6 TAGCTGAGTCCA
B7 GGCGACATGTAC
B8 GTAGATGCTTCG
B9 GGTGCGTGTATG
B10 GCTTACATCGAG
B11 GTATCCATGCGA
B12 TAACTCTGATGC
C1 TACTAATCTGCG
C2 TAGCCTCTCTGC
C3 GCTTGCGAGACA
C4 GTCATATCGTAC
C5 GTACGGCATACG
C6 GTATGCGCTGTA
C7 GTCTATCGGAGT
C8 GTGGCGATACAC
C9 TACACGATCTAC
C10 TACTGGACGCGA
C11 TAGCTCGTAACT
C12 GGCAGTGTATCG
D1 GTAGAGCTGTTC
D2 GCTTCATAGTGT
D3 TAACAGTCGCTG
D4 TACGTGTACGTG
D5 TAGCATCGTGGT
D6 GTACAAGAGTGA
D7 TACGCGCTGAGA
D8 TAGATCCTCGAT
D9 GCTGTGTAGGAC
D10 GGTCGTAGCGTA
D11 GTCTGGATAGCG
D12 GTGTGTGTCAGG
E1 TACAGTCTCATG
E2 TACTTCGCTCGC
E3 TAGGTATCTCAC
E4 GTCGTAGCCAGA
E5 GCTGTAGTATGC
E6 GGTCACTGACAG
E7 GTGATAGTGCCG
E8 GTATATCCGCAG
E9 GTCATTCACGAG
E10 GTCTTCGTCGCT
E11 GTGTTGCAGCAT
E12 TACATCACCACA
F1 TAGACTGTACTC
F2 GTAGCGCGAGTT
F3 GTCCATAGCTAG
F4 TAGTCGTCTAGT
F5 GGCTATGACATC
F6 GTGACCTGATGT
F7 TAGTGCTGCGTA
F8 GGTATACGCAGC
F9 GTAGCTGACGCA
F10 GTCGACTCCTCT
F11 GTGACTGCGGAT
F12 GTTCGCGTATAG
G1 TACGATGACCAC
G2 TAGATAGCAGGA
G3 TAGTGTGCTTCA
G4 GTTAGAGCACTC
G5 TACCGCTAGTAG
G6 TAGAGAGAGTGG
G7 TAAGCGCAGCAC
G8 TACTACATGGTC
G9 TAGCGACATCTG
G10 GGACGTCACAGT
G11 GTACTCTAGACT
G12 TACACACATGGC
H1 TACTGCGACAGT
H2 TAGCGGATCACG
H3 GTATGACTGGCT
H4 GTCTACACACAT
H5 GTGCACATTATC
H6 GGCGTACTGATG
H7 GTAGCAACGTCT
H8 TAGCACACCTAT
H9 TACGGTATGTCT
H10 GTTGTATACTCG
H11 GTCGTGTGTCAA
H12 GTGCAATCGACG

The complete order, including the barcodes above:

well oligo1 oligo2_to_the_same_well
A1 GCCTCCCTCGCGCCATCAGGTAGTGTCTAGCCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
A2 GCCTCCCTCGCGCCATCAGGTCGCTGTCTTCCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
A3 GCCTCCCTCGCGCCATCAGGTGAGGTCGCTACCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
A4 GCCTCCCTCGCGCCATCAGGTTGACGACAGCCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
A5 GCCTCCCTCGCGCCATCAGGTCACGACTATTCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
A6 GCCTCCCTCGCGCCATCAGGTCTGACAGTTGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
A7 GCCTCCCTCGCGCCATCAGGTGTGCTATCAGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
A8 GCCTCCCTCGCGCCATCAGTACAGATGGCTCCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
A9 GCCTCCCTCGCGCCATCAGTACTTACTGCAGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
A10 GCCTCCCTCGCGCCATCAGGGATCGCAGATCCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
A11 GCCTCCCTCGCGCCATCAGGTAGACTGCGTGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
A12 GCCTCCCTCGCGCCATCAGGTCAACGCGATGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
B1 GCCTCCCTCGCGCCATCAGGTCTCTCTACGCCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
B2 GCCTCCCTCGCGCCATCAGGTGTCTACATTGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
B3 GCCTCCCTCGCGCCATCAGGTATGTTGCTCACCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
B4 GCCTCCCTCGCGCCATCAGGTCTCATGTAGGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
B5 GCCTCCCTCGCGCCATCAGGTGTACCTATCACCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
B6 GCCTCCCTCGCGCCATCAGTAGCTGAGTCCACCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
B7 GCCTCCCTCGCGCCATCAGGGCGACATGTACCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
B8 GCCTCCCTCGCGCCATCAGGTAGATGCTTCGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
B9 GCCTCCCTCGCGCCATCAGGGTGCGTGTATGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
B10 GCCTCCCTCGCGCCATCAGGCTTACATCGAGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
B11 GCCTCCCTCGCGCCATCAGGTATCCATGCGACCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
B12 GCCTCCCTCGCGCCATCAGTAACTCTGATGCCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
C1 GCCTCCCTCGCGCCATCAGTACTAATCTGCGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
C2 GCCTCCCTCGCGCCATCAGTAGCCTCTCTGCCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
C3 GCCTCCCTCGCGCCATCAGGCTTGCGAGACACCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
C4 GCCTCCCTCGCGCCATCAGGTCATATCGTACCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
C5 GCCTCCCTCGCGCCATCAGGTACGGCATACGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
C6 GCCTCCCTCGCGCCATCAGGTATGCGCTGTACCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
C7 GCCTCCCTCGCGCCATCAGGTCTATCGGAGTCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
C8 GCCTCCCTCGCGCCATCAGGTGGCGATACACCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
C9 GCCTCCCTCGCGCCATCAGTACACGATCTACCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
C10 GCCTCCCTCGCGCCATCAGTACTGGACGCGACCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
C11 GCCTCCCTCGCGCCATCAGTAGCTCGTAACTCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
C12 GCCTCCCTCGCGCCATCAGGGCAGTGTATCGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
D1 GCCTCCCTCGCGCCATCAGGTAGAGCTGTTCCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
D2 GCCTCCCTCGCGCCATCAGGCTTCATAGTGTCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
D3 GCCTCCCTCGCGCCATCAGTAACAGTCGCTGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
D4 GCCTCCCTCGCGCCATCAGTACGTGTACGTGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
D5 GCCTCCCTCGCGCCATCAGTAGCATCGTGGTCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
D6 GCCTCCCTCGCGCCATCAGGTACAAGAGTGACCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
D7 GCCTCCCTCGCGCCATCAGTACGCGCTGAGACCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
D8 GCCTCCCTCGCGCCATCAGTAGATCCTCGATCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
D9 GCCTCCCTCGCGCCATCAGGCTGTGTAGGACCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
D10 GCCTCCCTCGCGCCATCAGGGTCGTAGCGTACCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
D11 GCCTCCCTCGCGCCATCAGGTCTGGATAGCGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
D12 GCCTCCCTCGCGCCATCAGGTGTGTGTCAGGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
E1 GCCTCCCTCGCGCCATCAGTACAGTCTCATGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
E2 GCCTCCCTCGCGCCATCAGTACTTCGCTCGCCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
E3 GCCTCCCTCGCGCCATCAGTAGGTATCTCACCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
E4 GCCTCCCTCGCGCCATCAGGTCGTAGCCAGACCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
E5 GCCTCCCTCGCGCCATCAGGCTGTAGTATGCCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
E6 GCCTCCCTCGCGCCATCAGGGTCACTGACAGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
E7 GCCTCCCTCGCGCCATCAGGTGATAGTGCCGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
E8 GCCTCCCTCGCGCCATCAGGTATATCCGCAGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
E9 GCCTCCCTCGCGCCATCAGGTCATTCACGAGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
E10 GCCTCCCTCGCGCCATCAGGTCTTCGTCGCTCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
E11 GCCTCCCTCGCGCCATCAGGTGTTGCAGCATCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
E12 GCCTCCCTCGCGCCATCAGTACATCACCACACCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
F1 GCCTCCCTCGCGCCATCAGTAGACTGTACTCCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
F2 GCCTCCCTCGCGCCATCAGGTAGCGCGAGTTCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
F3 GCCTCCCTCGCGCCATCAGGTCCATAGCTAGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
F4 GCCTCCCTCGCGCCATCAGTAGTCGTCTAGTCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
F5 GCCTCCCTCGCGCCATCAGGGCTATGACATCCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
F6 GCCTCCCTCGCGCCATCAGGTGACCTGATGTCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
F7 GCCTCCCTCGCGCCATCAGTAGTGCTGCGTACCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
F8 GCCTCCCTCGCGCCATCAGGGTATACGCAGCCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
F9 GCCTCCCTCGCGCCATCAGGTAGCTGACGCACCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
F10 GCCTCCCTCGCGCCATCAGGTCGACTCCTCTCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
F11 GCCTCCCTCGCGCCATCAGGTGACTGCGGATCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
F12 GCCTCCCTCGCGCCATCAGGTTCGCGTATAGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
G1 GCCTCCCTCGCGCCATCAGTACGATGACCACCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
G2 GCCTCCCTCGCGCCATCAGTAGATAGCAGGACCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
G3 GCCTCCCTCGCGCCATCAGTAGTGTGCTTCACCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
G4 GCCTCCCTCGCGCCATCAGGTTAGAGCACTCCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
G5 GCCTCCCTCGCGCCATCAGTACCGCTAGTAGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
G6 GCCTCCCTCGCGCCATCAGTAGAGAGAGTGGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
G7 GCCTCCCTCGCGCCATCAGTAAGCGCAGCACCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
G8 GCCTCCCTCGCGCCATCAGTACTACATGGTCCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
G9 GCCTCCCTCGCGCCATCAGTAGCGACATCTGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
G10 GCCTCCCTCGCGCCATCAGGGACGTCACAGTCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
G11 GCCTCCCTCGCGCCATCAGGTACTCTAGACTCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
G12 GCCTCCCTCGCGCCATCAGTACACACATGGCCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
H1 GCCTCCCTCGCGCCATCAGTACTGCGACAGTCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
H2 GCCTCCCTCGCGCCATCAGTAGCGGATCACGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
H3 GCCTCCCTCGCGCCATCAGGTATGACTGGCTCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
H4 GCCTCCCTCGCGCCATCAGGTCTACACACATCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
H5 GCCTCCCTCGCGCCATCAGGTGCACATTATCCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
H6 GCCTCCCTCGCGCCATCAGGGCGTACTGATGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
H7 GCCTCCCTCGCGCCATCAGGTAGCAACGTCTCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
H8 GCCTCCCTCGCGCCATCAGTAGCACACCTATCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
H9 GCCTCCCTCGCGCCATCAGTACGGTATGTCTCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
H10 GCCTCCCTCGCGCCATCAGGTTGTATACTCGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
H11 GCCTCCCTCGCGCCATCAGGTCGTGTGTCAACCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA
H12 GCCTCCCTCGCGCCATCAGGTGCAATCGACGCCGGACTACVSGGGTATCTAAT GCCTTGCCAGCCCGCTCAGGAGTGCCAGCMGCCGCGGTAA

 

Titanium Lib-a chemistry, NOT YET USED, need to confirm correctness. Fungal LSU primers. Four-bp multiplex identifiers (MIDs). Only one-directional sequencing needed, from the more variable 3′ end, so only B adapters have multiple MIDs attached.

adaptor adaptor seq key MID name mid our primer 5-3′ direction name
B CTATGCGCCTTGCCAGCCCGC TCAG RL091 CGTACAGATAT CCGTGTTTCAAGACGGG rev LR3-454B-091
B CTATGCGCCTTGCCAGCCCGC TCAG RL092 CGTAGCTCTCT CCGTGTTTCAAGACGGG rev LR3-454B-092
B CTATGCGCCTTGCCAGCCCGC TCAG RL093 CGTATAGTGCT CCGTGTTTCAAGACGGG rev LR3-454B-093
B CTATGCGCCTTGCCAGCCCGC TCAG RL094 CGTCAGCGACT CCGTGTTTCAAGACGGG rev LR3-454B-094
B CTATGCGCCTTGCCAGCCCGC TCAG RL095 CGTCGCAGTGT CCGTGTTTCAAGACGGG rev LR3-454B-095
B CTATGCGCCTTGCCAGCCCGC TCAG RL096 CGTCTCACGAT CCGTGTTTCAAGACGGG rev LR3-454B-096
B CTATGCGCCTTGCCAGCCCGC TCAG RL097 CGTGACTCAGT CCGTGTTTCAAGACGGG rev LR3-454B-097
B CTATGCGCCTTGCCAGCCCGC TCAG RL098 CTACACGCTCT CCGTGTTTCAAGACGGG rev LR3-454B-098
B CTATGCGCCTTGCCAGCCCGC TCAG RL099 CTACGATATGT CCGTGTTTCAAGACGGG rev LR3-454B-099
B CTATGCGCCTTGCCAGCCCGC TCAG RL100 CTAGACAGACT CCGTGTTTCAAGACGGG rev LR3-454B-100
B CTATGCGCCTTGCCAGCCCGC TCAG RL101 CTAGTACTCAT CCGTGTTTCAAGACGGG rev LR3-454B-101
B CTATGCGCCTTGCCAGCCCGC TCAG RL102 CTATATGTCGT CCGTGTTTCAAGACGGG rev LR3-454B-102
B CTATGCGCCTTGCCAGCCCGC TCAG RL103 CTATCGACACT CCGTGTTTCAAGACGGG rev LR3-454B-103
B CTATGCGCCTTGCCAGCCCGC TCAG RL104 CTATGTAGAGT CCGTGTTTCAAGACGGG rev LR3-454B-104
B CTATGCGCCTTGCCAGCCCGC TCAG RL105 CTCACGTACAT CCGTGTTTCAAGACGGG rev LR3-454B-105
B CTATGCGCCTTGCCAGCCCGC TCAG RL106 CTCGAGTCTCT CCGTGTTTCAAGACGGG rev LR3-454B-106
B CTATGCGCCTTGCCAGCCCGC TCAG RL107 CTCGTCGAGAT CCGTGTTTCAAGACGGG rev LR3-454B-107
B CTATGCGCCTTGCCAGCCCGC TCAG RL108 CTCTACAGCGT CCGTGTTTCAAGACGGG rev LR3-454B-108
B CTATGCGCCTTGCCAGCCCGC TCAG RL109 CTGTCGTGCGT CCGTGTTTCAAGACGGG rev LR3-454B-109
B CTATGCGCCTTGCCAGCCCGC TCAG RL110 CTGTGACGTGT CCGTGTTTCAAGACGGG rev LR3-454B-110
B CTATGCGCCTTGCCAGCCCGC TCAG RL111 GACGCTGTCGT CCGTGTTTCAAGACGGG rev LR3-454B-111
B CTATGCGCCTTGCCAGCCCGC TCAG RL112 GACGTATGACT CCGTGTTTCAAGACGGG rev LR3-454B-112
B CTATGCGCCTTGCCAGCCCGC TCAG RL113 GACTAGCTAGT CCGTGTTTCAAGACGGG rev LR3-454B-113
B CTATGCGCCTTGCCAGCCCGC TCAG RL114 GAGACGTCGCT CCGTGTTTCAAGACGGG rev LR3-454B-114
B CTATGCGCCTTGCCAGCCCGC TCAG RL115 GAGAGAGACGT CCGTGTTTCAAGACGGG rev LR3-454B-115
A CGTATCGCCTCCCTCGCGCCA TCAG no mid no mid AGTAACGGCGAGTGAAG for JH-LSU-091-454A
B CTATGCGCCTTGCCAGCCCGC TCAG RL091 CGTACAGATAT GTAGTCATATGCTTGTCTC rev NS1-454B-RL091
A CGTATCGCCTCCCTCGCGCCA TCAG no mid no mid GGCTGCTGGCACCAGACTTGC for NS2-454A

Again – Titanium Lib-A chemistry, not yet tested, Bacterial primers.

adaptor adaptor seq key MID name mid our primer 5-3′ direction name
B CTATGCGCCTTGCCAGCCCGC TCAG RL001 AGTCGTGGTGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-001
B CTATGCGCCTTGCCAGCCCGC TCAG RL002 ATACTAGGTGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-002
B CTATGCGCCTTGCCAGCCCGC TCAG RL003 ACGAGTGGTGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-003
B CTATGCGCCTTGCCAGCCCGC TCAG RL004 ATACGTGGCGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-004
B CTATGCGCCTTGCCAGCCCGC TCAG RL005 AGTCTACGCGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-005
B CTATGCGCCTTGCCAGCCCGC TCAG RL006 ACTAGAGGCGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-006
B CTATGCGCCTTGCCAGCCCGC TCAG RL007 AGTGTGTGCGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-007
B CTATGCGCCTTGCCAGCCCGC TCAG RL008 ACACAGTGCGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-008
B CTATGCGCCTTGCCAGCCCGC TCAG RL009 ACGATCTGCGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-009
B CTATGCGCCTTGCCAGCCCGC TCAG RL010 AGAGACGGAGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-010
B CTATGCGCCTTGCCAGCCCGC TCAG RL011 ACTCGTAGAGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-011
B CTATGCGCCTTGCCAGCCCGC TCAG RL012 ACGACGGGAGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-012
B CTATGCGCCTTGCCAGCCCGC TCAG RL013 ACGTCGGGTCT TGCTGCCTCCCGTAGGAGT rev 338r-454B-013
B CTATGCGCCTTGCCAGCCCGC TCAG RL014 ACTCTCGGACT TGCTGCCTCCCGTAGGAGT rev 338r-454B-014
B CTATGCGCCTTGCCAGCCCGC TCAG RL015 ATAGTAGGACT TGCTGCCTCCCGTAGGAGT rev 338r-454B-015
B CTATGCGCCTTGCCAGCCCGC TCAG RL016 AGACGTCGACT TGCTGCCTCCCGTAGGAGT rev 338r-454B-016
B CTATGCGCCTTGCCAGCCCGC TCAG RL017 AGTGTAGGACT TGCTGCCTCCCGTAGGAGT rev 338r-454B-017
B CTATGCGCCTTGCCAGCCCGC TCAG RL018 ACTACTAGACT TGCTGCCTCCCGTAGGAGT rev 338r-454B-018
B CTATGCGCCTTGCCAGCCCGC TCAG RL019 ACGTATAGTAT TGCTGCCTCCCGTAGGAGT rev 338r-454B-019
B CTATGCGCCTTGCCAGCCCGC TCAG RL020 AGTACGTGCTG TGCTGCCTCCCGTAGGAGT rev 338r-454B-020
B CTATGCGCCTTGCCAGCCCGC TCAG RL021 ACGCGTGGTCG TGCTGCCTCCCGTAGGAGT rev 338r-454B-021
B CTATGCGCCTTGCCAGCCCGC TCAG RL022 AGTACTGGTCG TGCTGCCTCCCGTAGGAGT rev 338r-454B-022
B CTATGCGCCTTGCCAGCCCGC TCAG RL023 ACGTAGTGTCG TGCTGCCTCCCGTAGGAGT rev 338r-454B-023
B CTATGCGCCTTGCCAGCCCGC TCAG RL024 ATCGACGGACG TGCTGCCTCCCGTAGGAGT rev 338r-454B-024
B CTATGCGCCTTGCCAGCCCGC TCAG RL025 ACTACGGGTAG TGCTGCCTCCCGTAGGAGT rev 338r-454B-025
B CTATGCGCCTTGCCAGCCCGC TCAG RL026 ACGTACGGTAC TGCTGCCTCCCGTAGGAGT rev 338r-454B-026
B CTATGCGCCTTGCCAGCCCGC TCAG RL027 ATACGTAGGAC TGCTGCCTCCCGTAGGAGT rev 338r-454B-027
B CTATGCGCCTTGCCAGCCCGC TCAG RL028 ACGTCGTGCAC TGCTGCCTCCCGTAGGAGT rev 338r-454B-028
B CTATGCGCCTTGCCAGCCCGC TCAG RL029 ACTCACGGTGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-029
B CTATGCGCCTTGCCAGCCCGC TCAG RL030 AGTATGGGTGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-030
B CTATGCGCCTTGCCAGCCCGC TCAG RL031 ACGCTGTGTGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-031
B CTATGCGCCTTGCCAGCCCGC TCAG RL032 ATATAGTGTGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-032
B CTATGCGCCTTGCCAGCCCGC TCAG RL033 AGAGTCTGTGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-033
B CTATGCGCCTTGCCAGCCCGC TCAG RL034 ACACGAGGTGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-034
B CTATGCGCCTTGCCAGCCCGC TCAG RL035 ATCGACAGTGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-035
B CTATGCGCCTTGCCAGCCCGC TCAG RL036 AGCGCGCGCGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-036
B CTATGCGCCTTGCCAGCCCGC TCAG RL037 ACACTCAGCGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-037
B CTATGCGCCTTGCCAGCCCGC TCAG RL038 ATCTCTGGCGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-038
B CTATGCGCCTTGCCAGCCCGC TCAG RL039 AGAGAGGGCGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-039
B CTATGCGCCTTGCCAGCCCGC TCAG RL040 ATCAGCGGCGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-040
B CTATGCGCCTTGCCAGCCCGC TCAG RL041 ATGCTAGGCGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-041
B CTATGCGCCTTGCCAGCCCGC TCAG RL042 ATATCACGAGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-042
B CTATGCGCCTTGCCAGCCCGC TCAG RL043 ACAGTGGGAGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-043
B CTATGCGCCTTGCCAGCCCGC TCAG RL044 AGCTAGGGAGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-044
B CTATGCGCCTTGCCAGCCCGC TCAG RL045 ATATATGGAGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-045
B CTATGCGCCTTGCCAGCCCGC TCAG RL046 ACGAGATGAGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-046
B CTATGCGCCTTGCCAGCCCGC TCAG RL047 AGTACAGGAGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-047
B CTATGCGCCTTGCCAGCCCGC TCAG RL048 AGCGCTAGAGT TGCTGCCTCCCGTAGGAGT rev 338r-454B-048
B CTATGCGCCTTGCCAGCCCGC TCAG RL049 AGTGAGGGTCT TGCTGCCTCCCGTAGGAGT rev 338r-454B-049
B CTATGCGCCTTGCCAGCCCGC TCAG RL050 ACTATAGGTCT TGCTGCCTCCCGTAGGAGT rev 338r-454B-050
B CTATGCGCCTTGCCAGCCCGC TCAG RL051 AGATCAGGTCT TGCTGCCTCCCGTAGGAGT rev 338r-454B-051
B CTATGCGCCTTGCCAGCCCGC TCAG RL052 ATCTGTAGTCT TGCTGCCTCCCGTAGGAGT rev 338r-454B-052
B CTATGCGCCTTGCCAGCCCGC TCAG RL053 AGAGATAGTCT TGCTGCCTCCCGTAGGAGT rev 338r-454B-053
B CTATGCGCCTTGCCAGCCCGC TCAG RL054 ACAGCGTGTCT TGCTGCCTCCCGTAGGAGT rev 338r-454B-054
B CTATGCGCCTTGCCAGCCCGC TCAG RL055 AGACTAGGTCT TGCTGCCTCCCGTAGGAGT rev 338r-454B-055
B CTATGCGCCTTGCCAGCCCGC TCAG RL056 ACTACGCGGCT TGCTGCCTCCCGTAGGAGT rev 338r-454B-056
B CTATGCGCCTTGCCAGCCCGC TCAG RL057 ACTCGTGGGCT TGCTGCCTCCCGTAGGAGT rev 338r-454B-057
B CTATGCGCCTTGCCAGCCCGC TCAG RL058 ACGCACAGGCT TGCTGCCTCCCGTAGGAGT rev 338r-454B-058
B CTATGCGCCTTGCCAGCCCGC TCAG RL059 AGTATCTGGCT TGCTGCCTCCCGTAGGAGT rev 338r-454B-059
B CTATGCGCCTTGCCAGCCCGC TCAG RL060 AGTCGACGGCT TGCTGCCTCCCGTAGGAGT rev 338r-454B-060
B CTATGCGCCTTGCCAGCCCGC TCAG RL061 ACGTGCAGACT TGCTGCCTCCCGTAGGAGT rev 338r-454B-061
B CTATGCGCCTTGCCAGCCCGC TCAG RL062 ATAGCGGGACT TGCTGCCTCCCGTAGGAGT rev 338r-454B-062
B CTATGCGCCTTGCCAGCCCGC TCAG RL063 ACAGACGGACT TGCTGCCTCCCGTAGGAGT rev 338r-454B-063
B CTATGCGCCTTGCCAGCCCGC TCAG RL064 ATCGTGGGTAT TGCTGCCTCCCGTAGGAGT rev 338r-454B-064
B CTATGCGCCTTGCCAGCCCGC TCAG RL065 AGCACGGGTAT TGCTGCCTCCCGTAGGAGT rev 338r-454B-065
B CTATGCGCCTTGCCAGCCCGC TCAG RL066 AGTGCTGGTAT TGCTGCCTCCCGTAGGAGT rev 338r-454B-066
B CTATGCGCCTTGCCAGCCCGC TCAG RL067 ACTAGCTGTAT TGCTGCCTCCCGTAGGAGT rev 338r-454B-067
B CTATGCGCCTTGCCAGCCCGC TCAG RL068 ATACTCTGTAT TGCTGCCTCCCGTAGGAGT rev 338r-454B-068
B CTATGCGCCTTGCCAGCCCGC TCAG RL069 ACGTGAGGGAT TGCTGCCTCCCGTAGGAGT rev 338r-454B-069
B CTATGCGCCTTGCCAGCCCGC TCAG RL070 AGACTGAGGAT TGCTGCCTCCCGTAGGAGT rev 338r-454B-070
B CTATGCGCCTTGCCAGCCCGC TCAG RL071 ATACGAGGGAT TGCTGCCTCCCGTAGGAGT rev 338r-454B-071
B CTATGCGCCTTGCCAGCCCGC TCAG RL072 ACGTCTCGGAT TGCTGCCTCCCGTAGGAGT rev 338r-454B-072
B CTATGCGCCTTGCCAGCCCGC TCAG RL073 AGACGTGGCAT TGCTGCCTCCCGTAGGAGT rev 338r-454B-073
B CTATGCGCCTTGCCAGCCCGC TCAG RL074 AGTAGTCGCAT TGCTGCCTCCCGTAGGAGT rev 338r-454B-074
B CTATGCGCCTTGCCAGCCCGC TCAG RL075 ACTGTCTGGTG TGCTGCCTCCCGTAGGAGT rev 338r-454B-075
B CTATGCGCCTTGCCAGCCCGC TCAG RL076 AGACTCGGGTG TGCTGCCTCCCGTAGGAGT rev 338r-454B-076
B CTATGCGCCTTGCCAGCCCGC TCAG RL077 ATCGTAGGGTG TGCTGCCTCCCGTAGGAGT rev 338r-454B-077
B CTATGCGCCTTGCCAGCCCGC TCAG RL078 ATATACAGGTG TGCTGCCTCCCGTAGGAGT rev 338r-454B-078
B CTATGCGCCTTGCCAGCCCGC TCAG RL079 ACATCGTGGTG TGCTGCCTCCCGTAGGAGT rev 338r-454B-079
B CTATGCGCCTTGCCAGCCCGC TCAG RL080 AGAGTATGGTG TGCTGCCTCCCGTAGGAGT rev 338r-454B-080
B CTATGCGCCTTGCCAGCCCGC TCAG RL081 ACAGTAGGCTG TGCTGCCTCCCGTAGGAGT rev 338r-454B-081
B CTATGCGCCTTGCCAGCCCGC TCAG RL082 ACTAGAGGCTG TGCTGCCTCCCGTAGGAGT rev 338r-454B-082
B CTATGCGCCTTGCCAGCCCGC TCAG RL083 ACGCGACGATG TGCTGCCTCCCGTAGGAGT rev 338r-454B-083
B CTATGCGCCTTGCCAGCCCGC TCAG RL084 ATAGTGTGTCG TGCTGCCTCCCGTAGGAGT rev 338r-454B-084
B CTATGCGCCTTGCCAGCCCGC TCAG RL085 ACACACTGTCG TGCTGCCTCCCGTAGGAGT rev 338r-454B-085
B CTATGCGCCTTGCCAGCCCGC TCAG RL086 ACGATGAGTCG TGCTGCCTCCCGTAGGAGT rev 338r-454B-086
B CTATGCGCCTTGCCAGCCCGC TCAG RL087 ATATACGGTCG TGCTGCCTCCCGTAGGAGT rev 338r-454B-087
B CTATGCGCCTTGCCAGCCCGC TCAG RL088 AGCGTACGGCG TGCTGCCTCCCGTAGGAGT rev 338r-454B-088
B CTATGCGCCTTGCCAGCCCGC TCAG RL089 ATACGATGGCG TGCTGCCTCCCGTAGGAGT rev 338r-454B-089
B CTATGCGCCTTGCCAGCCCGC TCAG RL090 AGTATAGGGCG TGCTGCCTCCCGTAGGAGT rev 338r-454B-090
B CTATGCGCCTTGCCAGCCCGC TCAG RL091 ATATCTGGACG TGCTGCCTCCCGTAGGAGT rev 338r-454B-091
B CTATGCGCCTTGCCAGCCCGC TCAG RL092 AGAGAGCGACG TGCTGCCTCCCGTAGGAGT rev 338r-454B-092
B CTATGCGCCTTGCCAGCCCGC TCAG RL093 AGCACTAGACG TGCTGCCTCCCGTAGGAGT rev 338r-454B-093
B CTATGCGCCTTGCCAGCCCGC TCAG RL094 AGTCGCGGACG TGCTGCCTCCCGTAGGAGT rev 338r-454B-094
B CTATGCGCCTTGCCAGCCCGC TCAG RL095 ACACTGGGACG TGCTGCCTCCCGTAGGAGT rev 338r-454B-095
B CGTATCGCCTCCCTCGCGCCA TCAG no mid no mid, same for all AGAGTTTGATCCTGGCTCAG for 27f-454A

Picogreen on the Real TIme PCR Machine

Posted on April 10, 2013 by adamblack in General Molecular Work

Picogreen on the RT PCR Machine

 

Per Chris Dervinis, Sr Biologist and Forest Genomics Lab Manager, SFRC, Univ. of FL :

“We use the sybr green filters for the assay, which is not mentioned in the protocol.  One thing to keep in mind is that the linear range for picogreen in these smaller assay is lower than it is with a plate reader and larger volume size, so you will need to be sure that your samples are under 50ng/ul or you will need to dilute for an accurate approximation.”

Plate Setup

1.Set up the standards using the Lambda DNA – Component C (100 ng/µl) with a total volume of 5 µl

For example: Make a 10 ng/µl Standard from the Lambda DNA

Add TE to the plate, according to the scheme below:

 

1

2

3

4

5

6

7

8

9

10

11

12

A

0 µl

0 µl

4 µl

B

1 µl

1 µl

C

2 µl

2 µl

D

2.5 µl

2.5 µl

E

3 µl

3 µl

F

3.5 µl

3.5 µl

G

4 µl

4 µl

H

5 µl

5 µl

 

Add DNA Standard (10 ng/ μL – kit supplies DNA standard 100 ng/ μL) and the samples, according to the scheme bellow:

 

1

2

3

4

5

6

7

8

9

10

11

12

A

5 µl (50ng)

5 µl

1 μL

B

4 µl (40 ng)

4 µl

C

3 µl (30 ng)

3 µl

D

2.5 µl (25 ng)

2.5 µl

E

2 µl (20 ng)

2 µl

F

1.5 µl (15 ng)

1.5 µl

G

1 µl (10 ng)

1 µl

H

0 µl (0 ng)

0 µl

 

1.Add 25 µl of Picogreen solution into each well

  1. Picogreen dilution: (1 Component A: 200 TE)

NOTE: Protect Picogreen solution from light (photo-sensitive)

1.Add the PCR flat caps over each column with the Strip Cap Tool (avoid touching the top of caps with your hands because the reading must pass through the caps)

  1. Vortex and spin down

RT PCR Set up

Lamp Warm up takes 20 mins so have the lamp warming up before starting plate setup.

1.Open the realplex program (password is “e”). If the program is not recognizing the thermocycler, make sure the USB  connection to the computer is in the right port (both the port and the cord are marked with marker). All other connections can be checked based on the arrangement in the manual (on computer desktop).

  1. Choose “Quantitative Plate Read”
  2. Set the plate grid
    1. Highlight wells that are for standard and click on “Standard” (right hand side)
    2. Highlight wells that are for samples and click on “Unknown” (right hand side)
    3. Highlight ALL wells that will be read and click SYBR
    4. Set the values for the Standards (for example: 50, 40, 30, 25, 20, 15, 10, 0)
      1. Set the 2 standard as replicates (right hand side) so the 2 readings will be averaged for 1 point on the standard curve
      2. Change the quantity from “copies” to “nanogram” (right hand side)
        1. It will ask for the conversion; Click “Do Not Convert”
        2. Click Run
        3. Click Pre-Read
        4. To analyze the data, click “Analysis” on the top right hand side, click “Results” tab to view Standard curve, Text Report, etc.

Save and export data to powerpoint or excel

PCR Cleanup

Posted on April 10, 2013 by adamblack in General Molecular Work

IMPORTANT: We now are performing clean up with our sequencing servicers GeneWiz and Eurofins. THis removes the need for clean up, as it is cheaper for them to do it. Please see the “Sequencing” protocol for more information on submitting your un-purified PCR samples for sequencing.

Use the following only with a single band PCR. With more bands, the only option is gel extraction & purification.

Exo-Sap-IT

Keep Exosap on ice and don’t keep out of freezer longer than necessary. This product doesn’t freeze so it is always ready to use straight out of the freezer.  Keep tubes in ice block until ready to put into thermocycler.

1)Per sample for bidirectional sequencing, use an ice block and in each PCR tube mix:

  • 0.5uL PCR grade water
  • 2uL PCR product

2) After all tubes are prepped, get tube of Exosap out of freezer and promptly add 1 uL to each tube. Immediately return the tube of Exosap to the freezer.

3) After spinning down, run ExoSap program on thermocycler (37C for 15 min, and 80C for 15 min). Depending on the thermocycler, you may need to change the volume of product in the program settings (or when prompted) to 3 uL.

4) When the cycle is finished, spin down again and put half the contents of each PCR tube (1.75 uL) into a 1.5 mL tube, and the remaining half into a second 1.5 mL tube. These will be your forward and reverse submissions for sequencing.

5) Label tubes with the appropriate database contig ID number (format ####-####) (not just the sequencing ID number) and update information in database.

Why the “contig ID” as the sequencing sample identifier?

Genious can easily assemble your forward and reverse sequences into contigs automatically and in batches. It is a one-button operation, and you don’t have to mess around with individual read editing.

What you need to do is to submit your sample names to ICBR in the right format: The name of each contig needs to be “seq_ID”-“PCR_ID”. This is already generated for you in the Isolations form “Sequencing”. Simply grab the contig_ID column that’s there automatically pre-filled, and put that on the spreadsheet that you are submitting to ICBR. Each forward sequence will have a unique seq_ID, but the PCR ID will be shared with the reverse sequence. That’s it.

Then, when you import your reads to Geneious, select the entire batch, go to Align/Assemble -> De Novo Assemble -> Assemble by 2nd position, separated by hyphen. Push Start .

You don’t have to spend an afternoon making arbitrary guesses as to which base is the right call. You also don;t have to trim the ends of the reads – the assembler does that automatically.

 

Gel extraction and clean-up

Our choice: E.Z.N.A. Gel Extraction Kit, Omega Bio-tek

  • 1) cut out gel slice, put in a tube, and weigh it (actual weight minus one empty tube (0.90 g))
  • 2) add equal volume of Binding Buffer (x g gel = x ml Buffer)
  • 3) incubate at 55-60 C for 7 min (or until gel dissolves)
  • 4) add 700uL to spin column, centrifuge at 10,000g for 1 min
  • (5) keep adding 700uL of solution to the spin column and spinning until all added)
  • 6) add 300uL of fresh Binding Buffer to the column, spin at 10,000 for 1 min
  • 7) add 700uL of ‘Wash Buffer, centrifuge at 10,000g for 1 min, discard flow-through
  • 8) same thing again: add 700uL of Wash Buffer, centrifuge, discard liquid
  • 9) discard liquid, centrifuge the empty column for 2 min at max speed
  • 10) put column in clean tube, add 30uL of Elution Buffer
  • 11) let soak for 1 minute, then centrifuge at max speed for 1 min
  • (12) (if maximum yield is more important than concentration, add another 30uL of Elution Buffer, centrifuge at max speed.)

 

Notes: When DNA yield is important, use fresh running TAE buffer. Old buffers have high pH and decrease yield.

If Buffer turns orange or red during incubation, pH is too high!

Useful overview of available kits here.

Genewiz folks recommend Qiagen kit, but that is expensive and people report low yields. If you need to load and separate the whole PCR reaction, make a thick gel.

MOBIO UltraClean PCR Cleanup

Protocol modified by Fierer Lab

  • 1. Shake to mix the SpinBind before use. Add 5 volumes of SpinBind to your PCR reaction. (ex. 500uL to 100uL of PCR reaction)
  • 2. Mix well by pipetting. If an oil overlay was used, you will now have two layers. The top layer is oil.
  • 3. Transfer PCR/SpinBind mixture to a Spin Filter column tube, while avoiding the transfer of oil.
  • 4. Centrifuge 10-30 seconds at a minimum 10,000 x g ~ 13,000rpm in a tabletop microcentrifuge.
  • 5. Remove the Spin Filter basket and discard liquid flow through by decanting then replace basket back in to the same tube.
  • 6. Add 300 ul SpinClean Buffer to the Spin Filter.
  • 7. Centrifuge 10-30 seconds at a min of 10,000 x g
  • 8. Remove the Spin Filter basket and discard liquid flow through by decanting then replace basket back in to the same tube.
  • 9. Centrifuge 90 seconds at a min of 10,000 x g
  • 10. Transfer Spin Filter to a clean 2ml Collection Tube
  • 11. Add 50uL Elution Buffer (10mM Tris) solution provided or sterile water directly onto the center of the white Spin Filter membrane. The choice of Tris or water will not affect yield. DNA is more stable for storage in Tris. Let sit on filter for 5 minutes.
  • 12. Centrifuge for 90 seconds at a min of 10,000 x g
  • 13. Discard Spin Filter basket from the inside of the Spin Filter. Purified DNA is now in the 2mL Collection tube. The DNA will be free of all reaction components such as primer or linkers, enzyme , salt and dNTPs. Store DNA at -20 degrees Celsius. DNA is now ready to use.

 

AMPure XP PCR Cleanup with Ring Magnet Plate

Manufacturer says to store AMPure refrigerated (do not freeze) and use within 12 months .

Our Eppendorf skirted plates are NOT compatible with the magnetic ring plate. All other brands of 96 well plates we have on hand at the time of writing (VWR, Fisherbrand, Applied Biosystems) are compatible.

Magnet is very strong: 

  • Must be kept well away from computers, thermal cyclers, centrifuge, cell phones and other electrical equipment, credit cards, etc. 
  • Must be kept away from people with pacemakers and defibrillator implants.

Do not autoclave magnet plate – looses magnetic strength if heated above 80 C.

  1. Gently shake the AMPure bottle to resuspend any magnetic beads that may have settled (color should be uniform)
  2. In a 96 well PCR plate (note compatible brands above) add 1.8 uL AMPure  for every 1 uL of PCR product (e.g. add 45 uL Ampure to a 25 uL PCR reaction =70 uL total volume) Keep PCR plate off magnetic plate until step 4.
  3. Mix AMPure and PCR product by pipetting 10x, then incubate at room temperature for 5 min.
  4. Following incubation, place PCR plate into the magnetic ring plate, let sit for 2 minutes or until solution is clear.
  5. Keeping the plate magnetized, remove and discard the clear solution via pipetting (do not disturb the ring of beads around the sides).
  6. Add 200 uL 70% ethanol, let sit for 30 seconds, then remove and discard all ethanol without disturbing the beads. Repeat this step for a total of two washes.
  7. Let stand for about 5 minutes for any remaining traces of ethanol to evaporate. Avoid allowing the ring of beads to dry for significantly longer, which will create a crackled appearance and inhibit elution.
  8. Remove from magnetic plate and add a minimum of 40 uL of elution buffer (=whatever you are resuspending your product in – molecular grade water, TE, etc). Mix by pipetting 10x. All the beads do not need to go back into solution for full elution.
  9. Place the plate back on the magnet and let sit for 1 minute to draw the beads back out of suspension.
  10. Without disturbing the ring of beads, transfer your samples to a new plate/tubes for storage.

PCR

Posted on April 10, 2013 by adamblack in General Molecular Work

PCR Procedure

Materials:
DNA Extractions
Forward and reverse primers
Premix taq from freezer
Empty Eppendorf tube
Eppendorf tube of PCR water
Positive control (Specimen already known to be high quality)
Two 96-well plates
Eppendorf vial rack

Preliminary Procedure:
• Primers need to be diluted from 10 micromolar to 1 micromolar to be stocked in the freezer for 1-2 months.
• Put your sample information in the database to make new sample numbers for the PCR.
• Label the strip tubes with the new sample numbers using an alcohol resistant marker and put them into a PCR plate. Add extra labels at the end for positive and negative controls.
• Look in “DNA methods” section of lab website for cycling methodology.
• Look in the database to find primers in the freezer.
• Use the PCR excel chart to determine the amount of reagents you need to use in the master mix (the final volume of the master mix should equal 25 uL).
• UV the PCR hood for 15 minutes before starting to do the PCR.

Master Mix Procedure:
o Add x uL of Taq to the empty Eppendorf tube
o Add x uL of each primer to the tube, pipetting up and down to mix
o Add x uL of PCR water to the tube
o Vortex the master mix for 5 seconds

PCR Procedure:
• Vortex the extractions for 1 second, and then centrifuge to eliminate any bubbles.
• Make sure that the DNA extractions are in the same order that the empty PCR tubes are in.
• Pipette 23 or 24 uL of master mix into each PCR tube using the same tip.
• Pipette 1 or 2 uL of each DNA extraction into the PCR tubes. Use a different pipette tip each time, and mix the liquid up and down with the pipette. Try not to introduce bubbles. Close each cap when done pipetting so that none are skipped or none have double the correct amount added.
• Add 1 or 2 uL of PCR water only to the negative control tube.
• Close the tops of all the vials and make sure that all of them are closed. Sometimes they do not close all the way even if they look closed.
• Tap the plate to the table to bring drops in the tubes down.
• Centrifuge strip tubes for 3 seconds to make sure there are no bubbles.
• Put the tubes into the smaller holes of the thermocycler. Make sure the caps are completely closed. Add other tubes of the same kind to balance it.
• Run the program called for in the PCR protocol, and set a timer to be able to take the PCR products out and put them in the freezer.
• Put the extractions and any unused reagents back in the freezer in your box.
• The PCR products should be used as soon as possible.
• Clean everything with ethanol and UV the hood.
.
.
.
.
Ensure you enter all PCR runs into the PCR form on the isolations database. You can use the form linked here to properly plan your PCR master mix and database entries. Use the database entry rows at the top to fill in your samples for one run, including a positive control (known working template for these conditions), an extraction negative control (negative control from extraction as template), and a PCR negative control (no template). Then put in the number of reactions in the master mix form, this will give you the necessary amount of reagents to make master mix for your reactions plus two additional.

It is recommended you input your PCR database entries before beginning mixing and your PCR run, this will reserve the spots so that the PCR IDs do not get taken while you are working.

PCR Form Template Excel

Extract-N-Amp PCR ready premix

Typical master mix:

  • PremixTAQ 12.5uL, found in freezer door. Fisher Catalog: RR003A
  • Primer F (Conc. 10uM) 1uL
  • Primer R (Conc. 10uM) 1uL
  • PCR H2O, aliquots made by lab manager and stored in shared reagent box in door of small freezer. 9.5uL
  • DMSO, aliquots made by lab manager and stored in shared reagent box in door of small freezer. 1uL

Please keep aliquots you open and use in your box after initial use.

Primer stock (100uM) locations can be found the Primer_locations table in the isolations database, these are in the ThermoFisher -80C freezer and will need to be diluted into a 10uM aliquot.

Multiply volumes by number of samples + 2 to make a small amount extra (form above does this). Use 25uL master mix and 1uL template per sample. PCR cycle will vary with primers used.

Common primers and cycle combinations used in our lab. Number in cycle title is usually annealing temperature.

  • ITS1F/ITS4 – PCR_55_safe
  • LR0R/LR3 – PCR_55_safe
  • Bt2a/Bt2b – PCR_52

Another master mix:

  • XNA template 4uL (if less, add XNA solutions up to 4 uL!)
  • primer F 0.5 uL (ideally 0.4uM)
  • primer R 0.5 uL (ideally 0.4uM)
  • XNA PCR ready premix 10 uL
  • water 5 uL (or add up to 20 uL total)

Typical cycling conditions:

  • 1) 94C, 3 min
  • 2) 94C, 45s
  • 3) xC, 45s
  • 4) 72C, 1:30min
  • 5) go to 2 34x

 

NEB Q5 High Fidelity polymerase

High fidelity polymerases have 3′->5′ exonuclease activity, and can chew up primers. Solutions:

1) increase primer concentration

2) protect primers’ 3′ end by phosphorothioate (2 or 3 last bases, not just one).

Non-specific annealing solutions:

1) Optimize annealing temperature.

2) minimize the time that the enzyme has to amplify annealed primers by working on ice, preheating your thermocycler to96C, and using a Hot-Start option (probably not necessary for Q5 which is not active at room temp.)

 

Typica

 

 

Clonetech LA Taq and Buffer

Clonetech Taq 0.25 ul
LA Buffer 2.5 ul
dNTPs (10mM each) 1 ul
primer F 1 ul
primer R 1 ul
template 2 ul
water 17.25 ul

Start cycling with at least 94C for 1 min, can go up to 98C each cycle.

General DNA Extraction Methods

Posted on April 10, 2013 by adamblack in General Molecular Work

Please record all extractions correctly in the database. See database protocols for isolations for more information.

Sigma Extract-N-Amp

Spin-down protocol (for beetles)

Keep BSA and the Ex-n-A solution cold, on ice or in a pre-frozen rack.

With BSA as a binding agent

  • beetle body parts (legs work well from specimens killed with 95% EtOH)
  • 40uL of Extraction Solution per sample (in yellow tray in the freezer)
  • run protocol Ex-n-Amp on thermocycler (96C for 30 minutes)
  • add equal volume(to extract solution) of 3% BSA (will bind extra stuff)— (40uL of Extraction Solution:40uL of BSA)
    • vortex thoroughly
  • spin down, store the upper half (30uL) as your final sample
  • use the 0.5-1.0uL of this supernatant for PCR

BSA from Fermentas, #00066587, 20mg/mL =~2%

 

General Ex-N-Amp protocol for fungi:

  1. Prepare strip tubes with 40uL of Sigma Aldrich extraction solution. This can be found in aliquots in the shared box in the door of the small freezer.
  2. Scrape approximately 10uL of hyphae from fungal colony using a sterile pipette tip (20uL works best and is not used for much else) or scalpel.
  3. Add fungal material to extraction solution and vortex.
  4. Run Ex-N-A protocol on a thermocycler (96C for 30 minutes).
  5. Spin down with high rpm.
  6. Pipet off the top 25uL: that’s your extract. It is often safe to dilute this a bit if you will need more than 25 uL, but this is not standard procedure.

Note: If BSA is needed, we have a stock of 2% molecular grade BSA in our freezer. This should be made into aliquots before using for samples. This is not standard, and only used in cases where it increases DNA amplification success.

OLD: Spin-down protocol (for fungi) 

Keep BSA and the Ex-n-A solution cold, on ice or in a pre-frozen rack.

With BSA as a binding agent

  • 10uL of original sample
  • 20uL of Extraction Solution per sample (in yellow tray in the freezer)
  • run protocol Ex-n-Amp on thermocycler (96C for 10 minutes)
  • add equal volume(to extract solution) of 3% BSA (will bind extra stuff)— (20uL of Extraction Solution:20uL of BSA)
    • shake thoroughly
  • spin it down, store the upper half (20uL) as your final sample
  • use the 0.5-1.0uL of this supernatant for PCR

BSA from Fermentas, #00066587, 20mg/mL =~2%

 

Manufacturer’s protocol – DON’T USE, the Dilution Solution inhibits PCR

With genuine Sigma components. Sigma manual here.

  1. 20uL of Extraction Solution per sample
  2. 96C for 10 minutes
  3. add equal volume of Dilution Solution
  4. ready for PCR. Allegedly stable for several months (says Sigma).

 

PowerLyzer

PowerLyzer Ultra Clean kit from MoBio, catalog # 12255-50

Prepare:

12 samples per one round
ice bucket, or pre-frozen tray in a fridge
tube heater (dry bath) at 65C
number all your tubes on top (four per sample, Bead tubes, Spin Filters, and the final PCR tubes)

Steps

  1. spin down sample for 1 min at max speed
  2. take 50uL of sediment and add it to bead tubes (with MicroBead solution and MD1)
  3. heat at 65C for 10 min
  4. while waiting, pre-aliquote solutions into tubes:
1 beads + 300uL MicroBead + 50uL MD1
2 100uL MD2
3 900uL: MD3
5. shake on MoBio vortex adaptor at full speed for 2 minutes
6. continue according to MoBio manual
…
19. transfer yield into labeled 250uL PCR tubes. This is our final sample.

 

 

Alternative strategies for small volumes of DNA

  • Direct PCR may work too, but not if lots of DNA is present. For direct PCR add 10 – 15 minutes a 95C at the beginning of the PCR.
  • Potassium xanthogenate method, Peter Young in York
  • Forensic kits, e.g., punch cards

 

CTAB DNA Extraction

Protocol

  1. Aliquot various size beads into 2 ml tubes (can use 1.5 ml, but the volume of beads has to be less than 0.7ml)
  2. add 500 uL CTAB into each tube
  3. add large piece of colony
  4. place in bead beater for 1 minute
  5. place on ice for 2.5 minutes
  6. repeat steps 4 and 5 two more times
  7. spin down briefly (1 min) to get rid of the foam
  8. add 500 uL chloroform, vortex well
  9. spin for 30 minutes full speed
  10. pipette off upper phase and combine with 500 uL freezer-cold isopropanol (may be stored overnight)
  11. spin 15 minutes at full speed
  12. pipette off alcohol. Dry pellet with low heat (~40C) in vacuum dryer.
  13. Dissolve pellet in 50uL water.

NOTE

  • May also include RNAse treatment before isopropanol addition or when taking off the supernatant
  • If using RNAse A (20mg/ml), add 5 uL after step 6 and incubate at 37C for 30 minutes
  • For smaller scales – use 250uL CTAb and equal parts of supernatant and chloroform

Tube Diets

Posted on April 10, 2013 by adamblack in Beetles

Diet composition

Mix:

  • 2.5 g malt extract
  • 44 g sawdust
  • 10 g agar
  • 2.5 g casein (may need to be dissolved in warm water)
  • 5 g dextrose
  • 2.5 g starch
  • Literature recommends adding antibiotics at this step – it makes no difference, since you will autoclave this mixture anyway.

Add 200 ml tap water and mix thoroughly.

Autoclave mixture and pour in skinny long tubes while hot.

Press with something autoclaved, such as the inner part of a syringe, to squeeze out extra liquid.

After pressing media into tubes and letting solidify, have them freeze and defreeze – makes media more aerated.

Notes
Malt extract is pretty acidic, so most bacteria don’t grow there, so antibiotics are not really needed. The bigger problem are molds and mites. Washing beetles can help get rid of some spores, but the beetles come with a rich intestinal microflora and lots of spores anyway, so ultimately the only way to keep your colony from collapsing is starting anew, or re-establishing it with pupae reared on a pure fungus culture.
Mites can be taken care of by keeping your culture on insecticidal paper (available for example from Carolina Biological Company)

Mycelial Diet

Posted on April 10, 2013 by adamblack in Beetles

Protocol

Tanahashi et al. – To obtain the basic artificial diets, agar powder (450 mg) (Nacalai Tesque, Kyoto, Japan), mycelial powder (100 mg), and deionised water containing the preservatives (15 ml) were placed in a 50-ml glass test-tube. Test tubes were autoclaved at 121 °C for 15 min.
Agar with wood only may serve as control.

To obtain mycelia of each fungal species, 5-mm diameter disks of fungal mat were removed from PDA plates, floated singly on 15 ml of aqueous potato dextrose broth (PD broth) (24 g/L) in 50-ml flasks (Sigma Aldrich, St. Louis, MO, USA), and incubated at 25 °C for 10 days. Residues (=mycelia) of fungal suspension by suction filtration were rinsed with deionized water several times and freeze-dried for 24 hours. Dried mycelia were ground with mortar and pestle to 0.5 mm mesh powder and then stored in a desiccator Tanahashi et al., 2009.
Sorbic acid can be used as anti-microbial agent.

  • Sorbic acid (0.828 g)
  • L(+)-ascorbic acid (1.0 g)
  • 133 and sodium hydrocarbonate (1.1 g) in deionized water (1000 ml) (Tanahashi et al., 2009).

Antibacterial additives:
streptomycin sulphate and chlortetracycline hydrochloride, at three different contents of 30, 60, and 300 ppm.Tanahashi et al., 2009 Use no more than 5˚C when using antibiotics.
In Autoclave
Add ascorbic acid to prevent oxygenation of diets in the autoclave. Can add sodium hydrocarbonate to pre-autoclaved diets to raise the pH to ca 5.5.

Extraction from Beetles

Posted on April 10, 2013 by adamblack in Beetles

Protocol

Materials

  • micropipette
  • micropipette tips
  • forceps
  • scalpel
  • razor
  • petri dishes
  • ethanol in petri dish

Procedure

Beetles: 10 female beetles

  1. Remove elytra and clip wings.
  2. Put each beetle in 0.5 ml 1X PBS
  3. Vortex (or sonicate) and keep/plate solution.
  4. In hood, separate beetle abdomen, head, and pronotum
  5. Glue abdomen onto a sterile plate, let dry in hood briefly.
  6. Meanwhile, put head in 0.5 ml 1X PBS
  7. Crush (substitute for extracting mandibular pouches)
  8. Open up the abdomen, suck up the contents under metanotum, transfer it in 0.5 ml 1X PBS’
  9. Remove gut, put in 0.5 ml 1X PBS
  10. and crush.
  11. remove contents from mycangium and transfer in 0.5 ml 1X PBS.

Sonicator test: use six beetles, sonicate two (separately) for 10, 30, 60 seconds. proceed as above. – NO DIFFERENCE, BEETLE STILL LIVING!

Bead beater – fill tubes with 500 μl of PBS. More liquid prevents movement of beads.

  • 1
  • 2
  • 3
  • 4
  • 5

View Lab Protocols

  • expandBacteria
  • expandBeetles
  • expandCurrent Work
  • expandDatabase
  • expandFungi
  • expandGeneral Molecular Work
  • expandMiscellaneous
  • expandPathology
  • expandSequence Analysis

(c) 2013 Ambrosia Symbiosis Lab Protocols

Cleantalk Pixel